
International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

29

A New Approach to Manage and Utilize Cloud
Computing Underused Resources

Alaa Eldeen S Ahmed
Computer Engineering Dept

Benha University
Shoubra Cairo-Egypt

Abdulwahab K. Alsammak
Computer Engineering Dept

Benha University
Shoubra Cairo-Egypt

Essam Algizawy
Computer Engineering Dept

Benha University
Shoubra Cairo-Egypt

ABSTRACT

In this paper a new approach for driving a better cloud

computing IaaS Services is presented. This approach

focuses on extending the available cloud computing

platform infrastructure by harvesting underused generic

computing resources that are widely available within

public domains such as universities and organizations.

Most of the current cloud computing platforms are mainly

based on using a dedicating infrastructure to achieve the

requested services. The proposed approach aims to improve

the computing power for the cloud computing platform

without charging any extra cost since generic machines

are owned by the enterprise. A new Resources

management mechanism is introduced to manage the

combination of the dedicated and generic machines. In

order to implement and achieve the goals of the proposed

approach several challenges should be conquered. These

challenges are coming from the inherently stochastic

characteristics of the harvested unused computing such as

reliability and hardware compatibility. In the implementation,

Openstack cloud computing platform is used and extended in

such a way that guarantees QoS and an opportunistic use of

the idle or underused generic or public computing resources.

General Terms

Cloud Computing, Resource Allocation, Open Stack Platform

Keywords

Cloud Computing, IaaS, Cycle-Harvesting, Resource

Management, Generic Computing.

1. INTRODUCTION

Cloud computing changes our mind and the way of

thinking about what is considered to be ”Our Data”or

”Our System”. They are no longer physically stored on a set

of computers and disks, both have been shifted to the cloud

which is diffused and distributed [1]. In this paradigm, cloud

computing services are delivered in an elastic, service-

oriented and on-demand pay-as-you-go manner to consumers.

According to McKinsey, with cloud computing commercial

enterprises can achieve saving potential of 30% to 40% with

needs orientated [2].

Although the cloud computing has many deployment

models, the private cloud is the most secure one. In private

clouds data and processes are managed within organization

boundaries without any restriction on the network bandwidth,

security exposures, or legal requirement [3]. Most of these

clouds are built on a well provisioning and well managed

infrastructure like OpenStack [4], Nimbus [5], Eucalyptus [6],

OpenNebula [7], and other open source IaaS/PaaS cloud

computing software platforms. Private cloud’s elasticity is

limited depending on the subjected organization’s maximum

dedicated hardware capacity.

Also it is bounded to fall short of demand, and adopting

all of infrastructure demands on a private cloud computing

will waste organization’s infrastructure investments. Running

idle generic machines as a part of the cloud offer an

opportunity to resolve such increasing need for cloud

computational resources, enable us to avoid the cost impact of

the over-provisioning or under-provisioning of the private

cloud dedicated resources. Also it reduces the need for

specialized infrastructure for resilience, such as redundant

power and cooling systems, battery backup, etc, which

represents 25% of data centre costs [8]. As well as it reduces

overall power consumption through the reduction in the

total number of machines since the energy cost of

manufacture for a computer has been estimated as four times

that used during its lifetime.

 This paper is organized as follows; section II presents

the volunteer cloud computing related works. The proposed

Architecture is described in section III. The extended

OpenStack cloud computing software platform is presented in

section IV. Section VI describes the architecture

implementation results. Finally, section VII presents the

conclusion.

2. RELATED WORK

Volunteer computing provides processing power up to

teraflops scale for scientific and technical projects. So there

are many projects and methodologies that aim to obtain the

benefits of cloud computing using volunteer machines. These

projects started with ad-hoc cloud that outlines the major

implementation challenges, and how under-use computing

resources within enterprises may be harnessed [9]. A typical

example is the ongoing project Cloud@Home [10] aims to

provide a cloud infrastructure that is capable of providing and

sharing resources and services for the scientific purposes. The

volunteer computing is behind the “@Home” philosophy of

sharing / donating resources [11][12]. The basic

Cloud@Home architecture is organized in three hierarchical

layers: frontend, virtual, and physical layer. The physical

layer is composed of cloud generic nodes geographically

distributed across the internet. Cloud@Home negotiate with

users that want to join the cloud about their contributions, and

monitoring such constrains, requirements, and policies in

order not to be violated [13].

mailto:Cloud@Home
mailto:@Home
mailto:Cloud@Home
mailto:Cloud@Home
mailto:Cloud@Home

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

30

Another example BoincVM aims to provide cross-

platform distributed computing platform. The key

development in BoincVM is to adapt BOINC [14][15] to

support virtualization which has been successfully pioneered

at CERN. In 2008 CERN R&D fire a project called CernVM,

it offered a general solution to the problem of VM images

management. CernVM offers a minimum VM appliance -

Less than 250 MB in size- then that image download all of its

libraries by itself. In 2011, the first BOINC project based on

VM was porn in the LHC@home Test4Theory project. This is

done based on CernVM and job management framework (Co-

pilot). Co-Pilot is CernVM’s cloud interface [16].

In [17] B. Sodhi proposed an architecture which serves a

user of the real-time system-state information from a

decentralized cluster of nodes. The most important

components of this architecture are the cloud controller, cloud

agent, and VM foundry. Cloud controller represents the

gateway between the cloud and the client. Its job is to

determine which suitable node can run the required VM to

satisfy the client requests. The cloud agent responses to the

cloud controller’s queries about the worker nodes, and

configure VM to run within the cloud on the selected nodes.

Finally the VM foundry which acts as images repository.

The work presented in [18], provides grid/cloud services

at low cost through the opportunistic use of idle computing

resources available in a university campus. UnaCloud

architecture is divided into two main components: UnaCloud

server and UnaCloud client. The main function of UnaCloud

server is to provide an entry to all services like service

deployment, access, management and monitoring. The

UnaCloud client installed and run directly on the underlying

opportunistic infrastructure. It is responsible for performing

all functions to provide a dynamic and on demand IaaS model

which makes it complex.

Sheng Di, 2011 introduces a design for a Self-organized

Cloud (SoC). SoC tackles two main issues; first makes a full

use of widely dispersed idle resources to construct a win- win

situation. Second guarantee the overall performance of the

system [19].

Table I shows a comparison between the well-known

@home cloud methodologies. There already exist many other

projects such as EduCloud@Home [20], MOON cloud [21],

Wuala cloud [22], Nebulas [23], symbiotic computing [24]

etc. All of these research projects generalize the concept of

volunteer computing to provide cloud services over it with

different ways. The main drawbacks of using distributed

volunteer resources for building the @Home cloud computing

platform results from the stochastic nature of the public

resources and limitation on the capability of the individual

underutilized resources.

3. PROPOSED ARCHITECTURE
The IaaS provisioning involves dynamics creation of an

infrastructure consisting of different types of computing re-

sources with necessary control and management planes. In the

proposed approach we modify and extend this model

which is built using the OpenStack cloud computing platform.

OpenStack seems to be on its way to be the open-source

software cloud stack of choice. Openstack is extend to allow

the ability of harvesting idle computing resources donated by

the public to join and leave the cloud and hence improve the

provided IaaS services [25].

Figure 1 shows the abstract view of the proposed model. This

model is considered as a modified version for the standard

IaaS/PaaS cloud computing platform. It consists of three

functional layers which are defined in the following

subsections:

Fig. 1: The Proposed Approach Abstracted

Architecture

Elements of each layer communicate and cooperate with

each other to perform the required tasks. Each of these layers

provides services for the above layer, each one knows only

the layer that communicates with and knows nothing about

other layers. Figure 1 illustrates the separation of concerns of

the architecture layers stated above that can be described as

the following:

 Front-end Layer: This layer represents IaaS services,

where the major goal is to facilitate service related data

handling and user interaction. It is also responsible for

managing all resources and services. It makes commands

and controls the virtualization hypervisor. Implementing

this layer also provides QoS, facilitates business models

management, and provides SLA polices as well.

 Virtualization Layer: This layer is the key element of our

approach. It provides homogenous view of

heterogeneous environment provided by the physical

infrastructure layer. This homogeneity is absorbed by the

higher front-end layer in the form of a set of services.

Each service is provisioned and delivered using virtual

machines.

Fig. 2: The Extended OpenStack Cloud Software

 Physical Infrastructure Layer: This layer provides a

possibility to handle all incoming requests and locally

running software. This layer combines two types of re-

sources; the cloud computing dedicated resources which

ensure QoS, and the volunteer computing resources de-

livered by the harvesting middleware. This mix of

generic and dedicated resources is managed and

organized using the higher virtualization layer physical

resources manager module.

 Each time a request for a new cloud computing service is

submitted, the cloud controller checks-up the available

resources such as cores, memory, and storage to deploy

mailto:LHC@home
mailto:@home
mailto:EduCloud@Home
mailto:@Home

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

31

such VM. If there is a provisioning for deploying such

virtual machine, the cloud controller will process the

request by deploying the requested service. But if the

virtual machine can’t be deployed on the current cloud

infrastructure due to lack of resources, the cloud

controller will ask the harvesting middleware to free up

cloud dedicated resources as shown in figure 2.

3.1 Harvesting Middleware Architecture
Harvesting middleware is the central part of the proposed

approach. It takes care of volunteer machines allocation and

its management. Also it is responsible for managing these

machines that join the cloud and resume cloud services of

the leaving volunteer machines. It consists of two main parts:

 Server-side harvesting middleware which takes care of

managing resources and resolving problems arise from

using volunteer machines.

 Light client side Resources Allocation Agent which pro-

vides a tool for services management on volunteer

machines, and cloud interaction.

The harvesting middleware consists of five daemons. Each

one of these daemons plays a vital role in running any cloud

service on a desktop machine to be a part of the cloud

computing infrastructure. The five daemons are Resources

Index Information Service (RIIS), Cloud Resources and

Service, Local Resources Manager (LRM), Virtual Machine

Manager (VMM), and Services Listener (SL). Figure3 shows

the harvesting middleware architecture components:

Fig. 3: Harvesting Middleware Architecture

1. Resources index information service (RIIS): RIIS

represents a lightweight directory of the attached desktop

machines, containing the basic information about local

desktop resources and its aliveness status. This is done

through a periodically heart beat message received from

each registered desktop machine. RIIS collects information

from several LRIS to allow searching the information to

find the most suitable resources. The desktop machine

local resources information offered by the RIIS includes

cores, memory, load status, desk storage and cloud service

(Virtual machine) running on it if any.

2. Cloud Resources and Service (CRS): CRS contains a

complete list of Cloud platform resources e.g. computing

node, network nodes, and storage. For each computing

node there is a list of different running services associated

with service information. This list may include, instance

name, memory, virtualization type, kernel, desk source,

interface type, service IP, DHCP server and all other

information contained with a libvirt XML generated files.

3. Local Resources manager (LRM): LRM is responsible for

managing the execution of any cloud computing services

on a desktop machine. It keeps track of all cloud

computing services running on desktop machines, it also

periodically query the status desktop running tasks from

RIIS. If the Cloud Controller requests the LRM to free up

certain cloud resources, the LRM will select the most

suitable desktop machine from information provided by

RIIS and CRS. Finally, it takes a snapshot of the running

virtual machine to be deployed on the selected desktop

machine.

4. Virtual machine manager (VMM): VMM works in con-

junction with the LRM to manage virtual machines in both

the cloud environment and the desktop machines. It is

responsible for creating image snapshots, suspending and

starting running cloud services. Also, it can issue a

deployment commands for starting , stopping , and

monitoring cloud computing virtual machines on desktop

PCs

5. Services Listener (SL): All users requests (Start,

Terminate, Snapshot etc.) are submitted to the cloud

controller with the associated service identification. SL

listens to all requests passed to the cloud controller and

redirects basic requests to (LRM registered / Migrated)

cloud service running on desktop machines instead of

passing it to either the compute nodes running those

services or these that have a suspended image to guarantee

service availability in case of desktop service failure.

3.2 Light Client Side Resources Allocation

Agent
Light Client Side Resources Allocation Agent is a

lightweight, highly portable and easy to install which is

installed and run directly on a volunteer computer. It consists

of four modules:

 Both of the Machine Information Providers (MIP) and

Local Resources Information Service (LRIS) represent the

resources discovery system which is responsible for

publishing and queuing the state of resources and their

configurations. Upon installing the RAA agent on any

desktop machine the MIP starts capturing information

about the local resources which in turn passed to LRIS

which represents the interface for RIIS on each desktop

machine.

 Image Manager (IM) is responsible for issuing simple

virtualization commands for starting, terminating or

monitoring new virtual machine. Also, it manages desktop

virtual machine networking.

 The last module is the service command manager. It is

used to execute basic requests redirect from SL daemon on

the running desktop cloud services

4. EXTENDED OPENSTACK CLOUD

PLATFORM
Extended OpenStack IaaS Lifecycle is shown in figure 4.This

figure presents different steps occurred through the IaaS

lifecycle if there are no spare dedicated cloud resources for

provisioning a new cloud service:

The proposed OpenStack extension to allow private cloud’s

elasticity not to be limited to the cloud dedicated machines.

This extension reflects the architecture explained in the

previous section that allow cloud computing platforms to add

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

32

the idle desktop machines when there is a need to free up

some of the dedicated cloud components to improve the

cloud platform performance which allow new services

provisioning. The OpenStack’s nova implementation has two

essential components; Messaging Queue and Database.

These components facilitate the asynchronous system

orchestration of complex tasks through message passing and

information sharing.

Fig. 4: Extended OpenStack IaaS Lifecycle

4.1 Message passing Extension
The complete message passing to free up a worker node

through the using of the extended OpenStack cloud

computing platform is shown in figure 5.

Fig. 5: Message passing for free up worker node task

It starts with a message from the API publisher to the

scheduler topic exchange. The worker scheduler retrieves

the message with a free up arguments from the scheduler

queue. The scheduler sends rpc.cast message to the

harvest topic to free up a picked worker node. This

message causes the harvesting middleware LRM to initiate a

service migration task. The LRM pick a random instance

metadata from CRS, and allocate a suitable desktop machine

from this information provided by RIIS and issue a VMM

create-snapshot task with metadata about the pick instance.

The information about volunteer resources passed on by the

agent MIP to the LRIS interface. The RIIS collects

information from multiple LRIS, to enable resources

searching to through this information to find a suitable

desktop machine for service migration. VMM create-

snapshot removes the loop mapping by creating and

compiling a new boot.cmd file to remove the cloud cloud-

init information. Also it adds a multi-boot compliant floppy

image, and combines cloud client applications and the base

system into a single VM after converting it to RAW format.

Finally transfer the execution of the created image to the

allocated volunteer machine and suspend the cloud service.

After migrating the cloud’s service to the allocated volunteer

machine, The LRM sends a message for the scheduler with

the compute worker host information where a new service

can be provisioned. To provision a new service, a fixed IP is

needed so the computer worker sends a message to network

controller to allocate such IP from IPTable and continues

with spawning of this instance.

Allocating fixed IP address or service address accomplish by

standard RPC call to the network controller. This call

targeted a specific host using a topic host exchange and

expecting a response from the called machine. The instance

spawning process is performed by the libvirt virtualization

interface driver. Libvirt stores all information about the

spawned instance in a libvirt.xml file using to-xml to store

and retrieve metadata. The libvirt.xml file placed within the

instance folder. Figure 6 shows the processes of allocating a

fixed address for a new instance.

Fig. 6: New service platform service spawning

4.2 Database Modifications
The SQL database stores most of the build-time and run- time

state for OpenStack’s nova cloud computing infrastructure.

But it does not support the bridging to the volunteer

computers, so a few modifications and additions are needed.

The first thing needed is a way to record registered volunteer

computers information. In standard OpenStack case only the

dedicated resources compute nodes are stored. So an extra

field added to indicate the generic desktop machines. An

additional networking table is needed referencing the

registered generic machine host information. The networking

table used for migrated services requests routing; besides

services fixed IPs. Regular cloud computing service cannot be

run on generic desktop machines, so a Volunteer-VMs table is

added. It contains the picked up services snapshots and their

corresponding path to compute nodes. This table has been

used to simplify the process of service migration to volunteer

desktop machines. It contains a path for converted cloud

service to suitable desktop VM format and all other

information about these VMs. So to pick these completed

snapshots, both of the instances table, and the instances

metadata table should be viewed. Finally keep track the

migrated instances to be able to record the source compute

nodes information, the destination generic desktop machine

host, the service status, and the snapshot running version. The

source compute node is used to ensure the service availability,

in case that any service status becomes down. Once the

service becomes down VMM will be ordered to resume the

latest running snapshot version stored.

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

33

5. CHALLENGES
Driving this approach for better cloud computing IaaS

services based on the opportunistic use of generic resources

is a significant challenge. This challenge due to the

characteristics of the harvested resources are inherently

stochastic, as well as cloud computing client always expects

to obtain optimized services against QoS definitions

provided based on SLA. The main challenges are discussed

here

 Cloud computing and generic resources computing are a

very different approach in distributed computing. Using

generic resources as a part of a cloud computing platform

require familiarizing ourselves with the concepts of the

cloud computing and generic resources in particular.

 Cloud computing resources are generally reliable

whereas the generic resources are not. So it is important

to figure out how to deal with a running service meant on

reliable resources on unreliable resources.

 Resources and service management mechanism - a

mechanism for managing dedicated and generic

resources are needed. This mechanism must provide a

high level of abstraction and service oriented for

different users through a unified interface. This interface

should provide a unique and uniform access point to our

system, which overcomes the problem of hardware

compatibility. It must allow users to submit functional

and nonfunctional requests without knowing the system

resources.

 QoS - The QoS can be defined in the term of service

availability based on the provider Service Level

Agreement (SLA). A problem to face at this level is the

reliability of services as the volunteer resources are

stochastic in nature.

 Security - An effective mechanism is required to provide

identity management and data protection.

 Clouds Interoperability - Our solution must be

interoperating with other cloud computing provider’s

platforms.

To successfully run generic resources as a part of a cloud

computing platform, The OpenStack cloud computing

platform is adapted to take advantage of the harvested idle

generic resources. The adaptation of the OpenStack

platform will ensure the availability of cloud computing

client’s services and the QoS of these services.

6. ARCHITECTURE

IMPLEMENTATION RESULTS
Evaluating the proposed approach is performed on two levels.

The first level is monitoring the cloud computing loads before

and after adding the harvesting middleware. These loads are

generated using the Stress Work load generator bench mark

[26]. The generated loads are gradually increased until

reaching the full utilization of the migrated services. The

performance of these services is monitored with each load.

Not only cloud service loads that affect the cloud QoS but

also new services creation can affect it. The second level is

monitoring the migrated cloud service QoS on volunteer

desktop machines with different loads. These loads enable

investigating their effects on cloud computing nodes. It also

monitors the effects of using non-dedicated infrastructure as a

part of the cloud computing platform on the migrated service

QoS. By applying this scenario, The following effects are

recorded:

6.1 Effect on Cloud compute Nodes
1- Cloud Computing Services Creation Effects: From the

client point of view, providing IaaS is no more than

creating a set of VMs by selecting the appropriate OS

system required for the cloud client from those offered by

the cloud provider. Upon creating service, the client will

have a VM with specific hardware specifications running

the chosen OS like any physical machine. IaaS Services

creation affects the performance of other services running

on this host. These effects shown in figure 7:

Fig. 7: Cloud services creation usage

2- Compute Node Performance without Loading Services:

Upon monitoring different system parameters after IaaS

ser- vices creation, about 90% of the computing node

memory still used or reserved even though these services

didn’t use these resources in any useful work. The reason

behind is that each cloud service locked its own memory,

which made it so difficult to create another service on the

same machine as shown in figure 8.

Fig. 8: Cloud working node after service
creation without loading a cloud service

3- Half Loading of a Compute Node Services: Upon putting

the services under half load stress, the memory reach its

maximum values and the CPU reach 90% at some points.

However the system is fully utilized, the full load services

are not reached yet as shown in figure 9.

Fig. 9: Loading half of a compute node

running services

4- Full Loading of a Compute Node: Now, on full loading

the cloud services with a cloud client demand pattern is

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

34

shown in figure 10, which defines the actual user CPU,

Memory and IO requests to a Cloud provider. This causes

the computing node memory and CPU reaching its

maximum values which enforces the system to reset a lot

of tasks as shown in figure11. Also IO requests will wait

for a significant amount of time. All these bad effects

degrade the system throughput for the requested services.

Fig. 10: Cloud client demand pattern

Fig. 11: Loading all of the cloud services

5- Moving Part of a Compute Node Services to Desktop

Machines: on applying our proposed solution and moving

40% of a cloud computes services to suitable desktop

(Windows / Linux) machines with the same demand

pattern shown in figure 10. This movement is partially

improving the performance of a compute node due to

decreasing its load which enables it to perform properly

with the remaining part of the cloud services.

Fig. 12: Moving 40% of a compute node services

6- Moving all Services to Desktop Machines: Moving all

services of a compute node to suitable desktop (Windows

/ Linux) machines with the same load described in the

demand pattern figure 10. The compute node performance

is significantly enhanced as shown figure 13.

Displacement of these services to desktop machines

makes the compute nodes ready to receive any further

cloud services or offloading any other compute node in

the Cloud Computing platform.

6.2 Effect on Volunteer machines

(Windows/Linux)
1- Desktop Machine Regular Usage: In normal cases there

is a consumption of a small part of the desktop machine

computing power capabilities, as shown in the following

figure 14 and figure 15. As shown in these figures, over

than 50% of machine memory is free to be used. Also, 80

% of CPU utilization is free to be used. This indicates the

good performance achieved when harvesting any

available non-dedicated machines.

Fig. 14: Regular windows machine performance

Fig. 15: Regular Linux machine performance

2- Loading Cloud Service on a Desktop Machine: To

measure the performance effect on loading the desktop

machine, IaaS service is run on the desktop (windows /

Linux) machine. Both of the desktop and cloud service

are not loaded yet with any cloud client requests. So the

performance is still good in both memory and the

processor (memory is about 55% underutilized) as shown

in figure 16 and figure 17.

Fig. 16: Run Cloud Service on windows machine (Both

of the desktop and service are not loaded)

Fig. 17: Run Cloud Service on Linux machine (Both

of the Client and service not loaded)

Secondly, loading a migrated cloud service with the same

load shown in figure 10, the system is still working properly

as shown in figure 18 and figure 19

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

35

Fig. 18: Load Cloud service on windows machine

Fig. 19: Load Cloud service on Linux machine

7. CONCLUSION
In this paper a new approach for better cloud computing IaaS

Services is presented. It is based on allocating idle generic

resources to maximize the cloud computing QoS at low cost.

This is accomplished through the implementation of the

harvesting middleware that represents a bridge from

OpenStack cloud computing platform to generic resources

donated by the on-premises desktop machines. These

resources run a set of different operating systems platforms.

This bridge enables us (with simple modifications) to work

with a number of cloud computing platforms like Amazon

Ec2, Eucalyptus, and other that use almost the same

virtualization methodology. According to our implementation

results, extending the available cloud computing platform

guarantees cloud service availability and an opportunistic use

of idle resources. This will provide a better service elasticity

and scalability through using both of the dedicated and non-

dedicated infrastructures. The action of moving cloud

computing services to generic resources, such as public

desktop machines available in homes, universities or

enterprises, will not affect the provided cloud services. But it

proves that using this mix of generic resources and dedicated

cloud computing infrastructure supplies inexpensive resources

with guarantee of QoS.

8. REFERENCES

[1] V. Delgado, “Exploring the limits of cloud

computing,” master of science thesis, Kungliga

Tekniska Hgskolan (KTH),Stockholm, Sweden, October

2010.

[2] S. Wind, “Open source cloud computing management

platforms: Introduction, comparison, and

recommendations for implementation,” in 2011 IEEE

Conference on Open Systems (ICOS), (Langkawi), pp.

175 – 179, Business Informatics and Systems

Engineering,University of Augsburg, Augsburg,

Germany, IEEE, Sept 2011.

[3] I. T. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud

computing and grid computing 360-degree compared,”

CoRR, vol. abs/0901.0131, 2009.

[4] D. Parrilla, “Stackops documentation,” May 2011.

http:// docs.stackops.org/ display/ doc03/ Home.

[5] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and Q.

Li, “Comparison of several cloud computing

platforms,” 2009 Second International Symposium on

Information Science and Engineering, pp. 23–27, 2009.

[6] I. Eucalyptus Systems, “Cloud roles - developers.”

http:// www.eucalyptus.com.

[7] I. OpenNebula.org, “Opennebula,” 2012.http://

opennebula.org/ .

[8] E. Williams, “Energy intensity of computer

manufacturing:hybrid assessment combining process and

economic input/output methods,” Environ- mental

Science & Technology, vol. 38, no. 22, pp. 6166–6174,

2004.

[9] G. Kirby, A. Dearle, A. Macdonald, and A. Fernandes,

“An Approach to Ad hoc Cloud Computing,” ArXiv e-

prints, Feb. 2010.

[10] A. Cuomo, G. D. Modica, S. Distefano, M. Rak,

and A. Vecchio, “The cloud@home architecture -

building a cloud infrastructure from volunteered

resources,” in 2011 - Proceedings of the 1st International

Conference on Cloud Computing and Services Science,

Noordwijker- hout, Netherlands, 7-9 May, 2011 (F.

Leymann, I. Ivanov, M. van Sinderen, and B.

Shishkov, eds.), pp. 424–430, SciTePress, 2011.

[11] S. Distefano, M. Fazio, and A. Puliafito, “The

cloud@home resource management system,” in IEEE

4th International Conference on Utility and Cloud

Computing UCC, pp. 122–129, IEEE Computer

Society, 2011.

[12] V. D. Cunsolo, S. Distefano, A. Puliafito, and M.

Scarpa, “Volunteer computing and desktop cloud: The

cloud@home paradigm,” in Proceedings of The Eighth

IEEE International Symposium on Networking

Computing and Applications NCA, pp. 134–139, IEEE

Computer Society, 2009.

[13] S. Distefano, A. Puliafito, M. Rak, and S.

Venticinque, “Qos management in cloud@home

infrastructures,” in CyberC, (Beijing,China), pp. 190–

197, International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, IEEE,

Oct 2011.

[14] D. P. Anderson, “Boinc: A system for public-resource

computing and storage,” in Proceedings of the 5th

IEEE/ACM International Workshop on Grid Computing,

GRID ’04, (Washington, DC, USA), pp. 4–10, IEEE

Computer Society, 2004.

[15] U. of California, “Computing with boinc,” 2012.

http:// boinc.berkeley.edu/ .

[16] M. G. . A. G. P. Buncic, “Boinc service for volunteer

cloud computing,” in Computing in High Energy and

Nuclear Physics (CHEP) 2012, Distributed Processing

and Analysis on Grids and Clouds, (New York City, NY,

http://docs.stackops.org/display/doc03/Home
http://www.eucalyptus.com/
http://opennebula.org/
http://opennebula.org/
mailto:cloud@home
mailto:cloud@home
mailto:cloud@home
mailto:cloud@home
http://boinc.berkeley.edu/

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.11, August 2013

36

USA), Citizen Cyberscience Centre, CERN, CH-1211

Switzerland, May 2012.

[17] B. Sodhi and T. Prabhakar, “A cloud architecture using

smart nodes,” Asia-Pacific Conference on Services

Computing. 2006 IEEE, vol. 0, pp. 116–123, 2011.

[18] E. Rosales, H. Castro, and M. Villamizar, “Unacloud :

Opportunistic cloud computing infrastructure as a

service,” CLOUD COMPUTING 2011 The Second

International Conference on Cloud Computing GRIDs

and Virtualization, no. c, pp. 187–194, 2011.

[19] S. Di, C.-L. Wang, L. Cheng, and L. Chen, “Social-

optimized win- win resource allocation for self-

organizing cloud,” Cloud and Service Computing,

International Conference on, vol. 0, pp. 251–258, 2011

[20] G. C. Guang Li, “A novel enhanced education

application of cloud computing,” in 2011 IEEE

International Conference on Cloud Computing and

Intelligence Systems (CCIS), Unit 61906, PLA,

Langfang, China, IEEE, Sept. 2011.

[21] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner,

and Z. Zhang, “Moon: Mapreduce on opportunistic

environments,” in Proceedings of the 19th ACM

International Symposium on High Performance

Distributed Computing, HPDC ’10, (New York, NY,

USA), pp. 95–106, ACM, 2010.

[22] L. AG, “Wuala storage cloud,” 2012.

http:// www.wuala.com/ en.

[23] A. Chandra and J. Weissman, “Nebulas: using

distributed voluntary resources to build clouds,” in

Proceedings of the 2009 conference on Hot topics in

cloud computing, HotCloud’09, (Berkeley, CA, USA),

USENIX Association, 2009.

[24] R. C. M. Akshay K. Singh, “Symbiotic computing,” in

2010 IEEE 4th International Symposium on Advanced

Networks and Telecommunication Systems, Yahoo!

Software Development Center, India, IEEE, 2010.

[25] E. Algizawy, A.E.S Ahmed, and A. Alsammak, “A

generic resources allocation approach for better cloud

computing iaas services,” in PDPTA’12,

WORLDCOMP’12 USA, 2012.

[26] A. Waterland, “Stress workload generator,” Junuary

2009. http://weathe.ou.edu

IJCATM : www.ijcaonline.org

http://www.wuala.com/en

